
Energy	Perf	ormance	Certificate

2d, Woodside LISBURN BT28 1HX	Date of assessment: Date of certificate: Type of assessment: Reference number: Accreditation scheme: Assessor's name: Assessor's accreditation number: Employer/trading name: Employer/trading address:	19 October 2009 20 October 2009 RDSAP, existing dwelling 9419-9984-0240-6161-2090 Stroma Certification Pearse Mckenna STRO001227 Energy Assessments NI 6A Altadaven Road AUGHER, BT77 0EN
	Related party disclosure:	None

Related party disclosure:

Energy Efficiency Rating

Technical Information

Main heating type and fuel: Total floor area: Approximate enery use: Approximate CO₂ emmissions: Dwelling type:

Boiler and radiators, mains gas 51 m² 167 kWh/m² per year 28 kg/m² per year Top-floor flat

Benchmark

Average for Northern Ireland

The approximate energy use and CO₂ emissions are per square metre of floor area based on fuel costs for the heating, ventilation, hot water and lighting systems. The rating can be compared to the benchmark of the average energy efficiency rating for the housing stock in Northern Ireland

Estimated energy use, carbon dioxide (CO₂) emmissions and fuel costs of this home

	Current	Potential
Energy use	167 kWh/m² per year	133 kWh/m² per year
Carbon dioxide emissions	1.4 tonnes per year	1.1 tonnes per year
Lighting	£26 per year	£26 per year
Heating	£221 per year	£186 per year
Hot water	£101 per year	£90 per year

The figures in the table above have been provided to enable prospective buyers and tenants to compare the fuel costs and carbon emissions of one home with another. To enable this comparison the figures have been calculated using standardised running conditions (heating periods, room temperatures, etc.) that are the same for all homes, consequently they are unlikely to match an occupier's actual fuel bills and carbon emissions in practice. The figures do not include the impacts of the fuels used for cooking or running appliances, such as TV, fridge etc.; nor do they reflect the costs associated with service, maintenance or safety inspections. Always check the certificate date reflect the costs associated with service, maintenance or safety inspections. Always check the certificate date

because fuel prices can change over time and energy saving recommendations will evolve.

About this document

The Energy Performance Certificate for this dwelling was produced following an energy assessment undertaken by a qualified assessor, accredited by Stroma Certification, to a scheme authorised by the Government. This certificate was produced using the RdSAP 2005 assessment methodology and has been produced under the Energy Performance of Buildings (Certificates and Inspections) Regulations (Northern Ireland) 2008. A copy of the certificate has been lodged on a national register.

If you have a complaint or wish to confirm that the certificate is genuine

Details of the assessor and the relevant accreditation scheme are on the preceding page. You can get contact details of the accreditation scheme from their website at www.stroma.com together with details of their procedures for confirming authenticity of a certificate and for making a complaint.

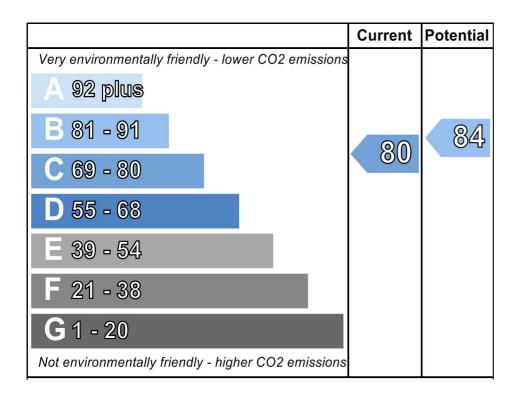
About the building's performance ratings

The ratings provide a measure of the building's overall energy efficiency and its environmental impact, calculated in accordance with a national methodology that takes into account factors such as insulation, heating and hot water systems, ventilation and fuels used. The average Energy Efficiency Rating for a dwelling in Northern Ireland is band E (rating 50).

Not all buildings are used in the same way, so energy ratings use 'standard occupancy' assumptions which may be different from the specific way you use your home. Different methods of calculation are used for homes and for other buildings. Details can be found at www.epb.dfpni.gov.uk

Buildings that are more energy efficient use less energy, save money and help protect the environment. A building with a rating of 100 would cost almost nothing to heat and light and would cause almost no carbon emissions. The potential ratings on the certificate describe how close this building could get to 100 if all the cost effective recommended improvements were implemented.

Remember to look for the energy saving recommended logo when buying energy-efficient products. It's a quick and easy way to identify the most energy-efficient products on the market.


For advice on how to take action and to find out about offers available to help make your home more energy efficient, call 0800 512 012 or visit www.energysavingtrust.org.uk

About the impact of the buildings on the environment

One of the biggest contributors to global warming is carbon dioxide. The way we use energy in buildings causes emissions of carbon. The energy we use for heating, lighting and power in homes produces over a quarter of the UK's carbon dioxide emissions and other buildings produce a further one-sixth.

The average household causes about 6 tonnes of carbon dioxide every year. Adopting the recommendations in this report can reduce emissions and protect the environment. You could reduce emissions even more by switching to renewable energy sources. In addition there are many simple everyday measures that will save money, improve comfort and reduce the impact on the environment. Some examples are given at the end of this report.

Potential environmental impact (CO₂) rating

Visit the Department of Finance and Personnel website at www.epb.dfpni.gov.uk to:

• Find how to confirm the authenticity of an energy performance certificate

- Find how to make a complaint about a certificate or the assessor who produced it
- Learn more about the national register where this certificate has been lodged
- Learn more about energy efficiency and reducing energy consumption

Further information about Energy Performance Certificates can be found under Frequently Asked Questions at www.epcregister.com

Recommended measures to improve this home's energy performance

2d, Woodside LISBURN BT28 1HX Date of certificate: Reference number: 20 October 2009 9419-9984-0240-6161-2090

Summary of this home's energy performance relaed features

The table below gives an assessment of the key individual elements that have an impact on this home's energy and environmental performance. Each element is assessed by the national calculation methodology against the following scale: Very poor / Poor / Average / Good / Very good. The assessment does not take into consideration the physical condition of any element. 'Assumed' means that the insulation could not be inspected and an assumption has been made in the methodology based on age and type of construction.

Element	Description		Current Performance	
	Docomption	Energy efficiency	Environmental	
Walls	Cavity wall, as built, no insulation (assumed)	Poor	Poor	
Roof	Pitched, 200 mm loft insulation	Good	Good	
Floor	(other premises below)	-	-	
Windows		Very good	Very good	
Main heating	Boiler and radiators, mains gas	Good	Good	
Main heating controls	Programmer, room thermostat and TRVs	Good	Good	
Secondary Heating	None	-	-	
Hot water	From main system	Good	Good	
Lighting	Low energy lighting in all fixed outlets	Very good	Very good	
Current energy efficiency rating B 82				

Current environmental impact (CO₂) rating

C 80

Low and zero carbon energy sources

None

Recommendations

The measures below are cost effective. The performance ratings after improvement listed below are cumulative, that is they assume the improvements have been installed in the order that they appear in the table. However you should check the conditions in any covenants, warranties or sale contracts, and whether any legal permissions are required such as a building warrant, planning consent or listed building restrictions.

Lower cost measures (up to £500)	Typical savings per year	Performance ratings after improvement			
		Energy efficiency	Environmental impact		
1 Cavity wall insulation	£28	B 84	B 83		
Sub-total	£28				
Higher cost measures (Over £500)					
2 Replace boiler with Band A condensing boiler	£18	B 85	B 84		
Total	£46				
Potential energy efficiency rating		B 85			

Potential environmental impact (CO₂) rating

B 84

Further measures to achieve even higher standards

None

Improvements to the energy efficiency and environmental impact ratings will usually be in step with each other. However, they can sometimes diverge because reduced energy costs are not always accompanied by reduced carbon dioxide (CO₂) emissions.

About the cost effective measures to improve this home's performance ratings

Building regulations apply to most measures. Building regulations approval and planning consent may be required for some measures. If you are a tenant, before undertaking any work you should check the terms of your lease and obtain approval from your landlord if the lease either requires it, or makes no express provision for such work.

Lower cost measures (typically up to £500 each)

These measures are relatively inexpensive to install and are worth tackling first. Some of them may be installed as DIY projects. DIY is not always straightforward, and sometimes there are health and safety risks, so take advice before carrying out DIY improvements.

1 Cavity wall insulation

Cavity wall insulation, to fill the gap between the inner and outer layers of external walls with an insulating material, reduces heat loss; this will improve levels of comfort, reduce energy use and lower fuel bills. The insulation material is pumped into the gap through small holes that are drilled into the outer walls, and the holes are made good afterwards. As specialist machinery is used to fill the cavity, a professional installation company should carry out this work, and they should carry out a thorough survey before commencing work to ensure that this type of insulation is suitable for this home. They should also provide a guarantee for the work and handle any building control issues. Further information about cavity wall insulation and details of local installers can be obtained from the National Insulation Association (www.nationalinsulationassociation.org.uk).

Higher cost measures (typically over £500 each)

2 Band A condensing boiler

A condensing boiler is capable of much higher efficiencies than other types of boiler, meaning it will burn less fuel to heat this property. This improvement is most appropriate when the existing central heating boiler needs repair or replacement, but there may be exceptional circumstances making this impractical. Condensing boilers need a drain for the condensate which limits their location; remember this when considering remodelling the room containing the existing boiler even if the latter is to be retained for the time being (for example a kitchen makeover). It is best to obtain advice from a qualified heating engineer. Ask the engineer to explain the options.

About the further measures to achieve even higher standards

Not applicable

What can I do today?

Actions that will save money and reduce the impact of your home on the environment include:

- Ensure that you understand the dwelling and how its energy systems are intended to work so as to obtain the maximum benefit in terms of reducing energy use and CO2 emissions.
- Check that your heating system thermostat is not set too high (in a home, 21°C in the living room is suggested) and use the timer to ensure you only heat the building when necessary.
- Make sure your hot water is not too hot a cylinder thermostat need not normally be higher than 60°C.
- Turn off lights when not needed and do not leave appliances on standby. Remember not to leave chargers (e.g. for mobile phones) turned on when you are not using them.
- Close your curtains at night to reduce heat escaping through the windows.
- If you're not filling up the washing machine, tumble dryer or dishwasher, use the half-load or economy programme.